Ocean circulation in the North Pacific during the last glacial termination

Yusuke Okazaki et al., p 60

Brunelle BG et al. (2010) Glacial/interglacial changes in nutrient supply and stratification in the western subarctic North Pacific since the penultimate glacial maximum, Quaternary Science Reviews 29: 2579-2590
Chikamoto MO et al. (2012) Variability in North Pacific intermediate and deep water ventilation during Heinrich events in two coupled climate models, Deep-Sea Research II 61-64: 114-126
Galbraith ED et al. (2007) Carbon dioxide release from the North Pacific abyss during the last deglaciation, Nature 449: 890-894
Keigwin LD et al. (2006) Rapid sea-level rise and Holocene climate in the Chukchi Sea, Geology 34: 861-864
Okazaki Y et al. (2010) Deepwater Formation in the North Pacific During the Last Glacial Termination, Science 329: 200-204

North Pacific - North Atlantic linkages during the Last Glacial Termination

Naomi Harada et al., p 62

Harada N et al. (2012) Sea surface temperature changes in the Okhotsk Sea and adjacent North Pacific during the last glacial maximum and deglaciation, *Deep-Sea Res. II* 61-64: 93-105

Kiefer T and Kienast M (2005) Patterns of deglacial warming in the Pacific Ocean: a review with emphasis on the time interval of Heinrich event 1, *Quaternary Science Reviews* 24: 1063-1081

Sakamoto T et al. (2005) Ice-rafted debris (IRD)-based sea-ice expansion events during the past 100 kyr in the Okhotsk Sea, *Deep-Sea Research II* 52: 2275-2301

Teleconnection mechanism between Millennial-scale Asian Monsoon dynamics and the North Atlantic

Kana Nagashima and Ryuji Tada, p 64

Abe O et al. (2005) Local Circulation with Aeolian Dust on the Slopes and Foot Areas of the Tianshan and Kunlun Mountains around the Taklimakan Desert, China, *Water, Air, & Soil Pollution: Focus* 5: 3-13

Laïné A et al. (2009) Northern hemisphere storm tracks during the last glacial maximum in the PMIP2 ocean-atmosphere coupled models: energetic study, seasonal cycle, precipitation, *Climate Dynamics* 32: 593-614

Moreno A et al. (2005) Links between marine and atmospheric processes oscillating on a millennial time-scale. A multi-proxy study of the last 50,000 yr from the Alboran Sea (Western Mediterranean Sea), *Quaternary Science Reviews* 24: 1623-1636

Nagashima K et al. (2011) Millennial-scale oscillations of the westerly jet path during the last glacial period, *Journal of Asian Earth Sciences* 40: 1214-1220

Sun Y et al. (2007) Distinguishing the sources of Asian dust based on electron spin resonance signal intensity and crystallinity of quartz, *Atmospheric Environment* 41: 8537-8548

Wang YJ et al. (2001) A High-Resolution Absolute-Dated Late Pleistocene Monsoon Record from Hulu Cave, China, *Science* 294: 2345-2348

YokoyamaY et al. (2007) Japan Sea oxygen isotope stratigraphy and global sea-level changes for the last 50,000 years recorded in sediment cores from the Oki Ridge, *Palaeogeography, Palaeoclimatology, Palaeoecology* 247: 5-17
Latent 1500-year climate oscillation in the Holocene

Masanobu Yamamoto, p 66

Alley RB et al. (1997) Holocene climatic instability: A prominent, widespread event 8200 yr ago, Geology 25: 483-486
Bond G et al. (1997) A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates, Science 278: 1257-1266
Braun H et al. (2005) Possible solar origin of the 1,470-year glacial climate cycle demonstrated in a coupled model, Nature 438: 208-211
Isono D et al. (2009) The 1,500-year climate oscillation in the mid-latitude North Pacific during the Holocene, Geology 37: 591-594

The history of Lake Biwa drilling

Keiji Takemura, p 68

Hayashi R, Takahara H, Hayashida A and Takemura K (2010) Millennial-scale vegetation changes during the last 40,000 yr based on a pollen record from Lake Biwa, Japan, Quaternary Research 74: 91-99
Hayashida A et al. (2007) Environmental magnetic record and palaeoecological variation data for the last 40 kyr from the Lake Biwa sediments, Central Japan, Earth, Planets and Space 59: 807-814
Horie S et al. (1971) Paleolimnological study on lacustrine sediments of Lake Biwa-ko, Contribution from the Geological Institute, Kanazawa University 18: 745-762
Nakagawa T et al. (2008) Regulation of the monsoon climate by two different orbital rhythms and forcing mechanisms, *Geology* 36: 491-494
Takemura K (1990) Tectonic and climatic record of the Lake Biwa, Japan, region provided by the sediments deposited since Pliocene times, *Paleogeography, Paleoclimatology, Palaeoecology* 78: 185-193
Takemura K et al. (2000) Stratigraphy of multiple piston-core sediments for the last 30,000 years from Lake Biwa, Japan, *Journal of Paleolimnology* 23(2): 185-199

Lake Suigetsu 2006 Varved Sediment Core Project

Takeshi Nakagawa et al., p 70

Kossler A et al. (2011) Onset and termination of the late-glacial climate reversal in the high-resolution diatom and sedimentary records from the annually laminated SG06 core from Lake Suigetsu, Japan, *Palaeogeography, Palaeoclimatology, Palaeoecology* 306: 103-115
Nakagawa T et al. (2005) Pollen/event stratigraphy of the varved sediment of Lake Suigetsu, central Japan from 15,701 to 10,217 5G yr BP (Suigetsu varve years before present): Description, interpretation, and correlation with other regions, *Quaternary Science Reviews* 24: 1691-1701
Nakagawa T et al. (2012) SG06, a perfectly continuous varved sediment core from Lake Suigetsu, Japan: Stratigraphy and potential for improving radiocarbon calibration model and understanding of climate changes, *Quaternary Science Reviews* 36: 164-176
Shen C-G et al. (2010) East Asian monsoon evolution and reconciliation of climate records from Japan and Greenland during the last deglaciation, *Quaternary Science Reviews* 29: 3327-3335
Smith VC et al. (2011) Toward establishing precise ⁴⁰Ar/³⁹Ar chronologies for Late Pleistocene palaeoclimate archives: an example from the Lake Suigetsu (Japan) sedimentary record, Quaternary Science Reviews 30: 2845-2850

Staff RA et al. (2011) New ¹⁴C determination from Lake Suigetsu, Japan: 12,000 to 0 cal. BP, Radiocarbon 53: 511-528

Stuiver M et al. (1998) INTCAL98 radiocarbon age calibration, 24,000-0 cal BP, Radiocarbon 40: 1041-1083

Monsoon reconstruction in subtropical Asia from oxygen isotope ratios of tree-ring cellulose

Masaki Sano et al., p 72

Buckley BM et al. (2010) Climate as a contributing factor in the demise of Angkor, Cambodia, PNAS 107: 6748-6752

Saurer M, Borella S and Leuenberger M (1997) δ¹⁸O of tree rings of beech (Fagus sylvatica) as a record of δ¹⁸O of the growing season precipitation, Tellus 49B, 80-92

Hydroclimate reconstruction in Indonesia over the last centuries by stalagmite isotopic analyses
Yumiko Watanabe et al., p 74

Reconstructing river runoff over the past 2000 years in the arid Heihe River Basin, northwestern China
Koji Fujita and Akiko Sakai, p 76

Chen A and Ohmura A (1990) Estimation of alpine glacier water resources and their change since 1870s, IAHS Publication 193: 127-135

Immerzeel WW, van Beek LPJ and Bierkens MFP (2010) Climate change will affect the Asian water towers, Science 328: 1382-1385

Two centuries of climate events detected in coral records from Ishigaki and Ogasawara Islands, Japan

Atsushi Suzuki, p 78

Tracing the response of climate to galactic cosmic rays

Hiroko Miyahara et al., p 80

Document-based reconstruction of past climate in Japan

Masumi Zaiki et al., p 82

Mikami T (1992) Climate variations in Japan during the Little Ice Age -Summer temperature reconstructions since 1771, In: Mikami T (Ed) *Proceedings of the International Symposium on the Little Ice Age Climate*, Tokyo Metropolitan University, 176-181

Human-environment interaction and climate in the Japanese Archipelago
Takakazu Yumoto et al., p 84
Sasaki N and Takahara H (2012) Fire and human impact on the vegetation of the western Tamba Highlands, Kyoto, Japan during the late Holocene, Quaternary International 254: 3-11
Tsukada M (1983) Vegetation and Climate during the Last Glacial Maximum in Japan, Quaternary Research 19: 212-235

Open Section p 86-88

An 800-Year Decadal-Scale Reconstruction of Annual Mean Temperature for Temperate North America
Eugene R. Wahl et al., p 86
Kaufmann DS et al. (2009) Recent warming reverses long-term Arctic cooling, Science 325: 1236-1239
Ljunqvist FC, Krusic PJ, Brattström G, Sundqvist HS (2012) Northern Hemisphere temperature patterns in the last 12 centuries, Climate of the Past 8: 227-249
Mann ME et al. (2009) Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly, Science 326: 1256-1260
A Pollen-based Extension of the 800-Year Decadal-Scale Reconstruction of Annual Mean Temperature for Temperate North America back to 480 AD

Valerie Trouet et al., p 86

Büntgen U et al. (2011) 2500 Years of European Climate Variability and Human Susceptibility, Science 331: 578-582
Mann ME et al. (2009) Global Signatures and Dynamical Origins of the Little Ice Age and Medieval Climate Anomaly, Science 326: 1256-1260
Moberg A et al. (2005) Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data, Nature 433: 613-617

Program News p 89-91

Solar Forcing – a new PAGES Working Group

Juerg Beer, p 91

Wanner H et al. (2008) Mid- to Late Holocene climate change: an overview, Quaternary Science Reviews 27: 1791-1828

Workshop reports p 92-107

Arctic2k: Spatiotemporal Temperature Reconstruction

Sami Hanhijärvi, p 92

Hanhijärvi S (2011) Arctic2k: Synthesizing paleoclimate data to assess Arctic climate change. PAGES news 9(2): 73

2nd Workshop of the PAGES Asia 2k Working Group

Masaki Sano et al., p 93

Cook ER et al. (2010) Asian monsoon failure and megadrought during the last millennium, *Science* 328: 486-489

Euro-Med2k: Synthesizing paleoclimatic data to reconstruct 2000 years of European/Mediterranean temperature change

Jürg Luterbacher et al., p 94

Büntgen U et al. (2011) 2500 Years of European Climate Variability and Human Susceptibility, *Science* 331: 578-582

Deciphering climatic and environmental signals from varved sediments by applying process-related studies

Bernd Zolitschka et al., p 95

A Strategic Plan for Scientific Drilling in the East African Rift Lakes

James M. Russell et al., p 96

Tierney JE et al. (2008) Northern Hemisphere Controls on Tropical Southeast African Climate During the past 60,000 years, *Science* 322: 252-255
Assessing the History of the Greenland Ice Sheet through Ocean Drilling

Anders Carlson and Joseph Stoner, p 97

Funder S et al. (2011) The Greenland Ice Sheet During the Past 300,000 Years: A Review, Developments in Quaternary Science 15: 699-713
Otto-Bliesner BL et al. (2006) Simulating Arctic Climate Warmth and Icefield Retreat in the Last Interglaciation, Science 311: 1751-1753

Processes and Quaternary history of dust dynamics: low-latitude records and global implications

Jan-Berend Stuut et al., p 98

Rousseau DD, Hatte C and Tegen I (2009) ADOM – Atmospheric circulation dynamics during the last glacial cycle: Observations and modeling, PAGES news 17(2): 75

Using paleo-climate model/data comparisons to constrain future projections

Gavin A. Schmidt et al., p 101

The Paleo-ocean challenge: data meet models

Michal Kucera et al., p 102

Hargreaves JC et al. (2011) Are paleoclimate model ensembles consistent with the MARGO data synthesis? Climate of the Past 7: 917-933

Climate Refugia: Joint Inference from Fossils, Genetics and Models

Daniel G. Gavin et al., p 105

Botkin DB et al. (2007) Forecasting the effects of global warming on biodiversity, BioScience 57: 227-236
Dobrowski SZ (2011) A climatic basis for microrefugia: the influence of terrain on climate, Global Change Biology 17: 1022-1035

Geoarcheological Workshop – Actual stage of the environmental archeology investigations in southern Poland and northern Czech Republic

Lenka Lisa et al., p 107

Nadachowski A et al. (2011) Biostratigraphic importance of the Early Pleistocene fauna from Żabia Cave (Poland) in Central Europe, *Quaternary International* 243: 204-218

Skrzypek G, Wiśniewski A and Grierson PF (2011) How cold was it for Neanderthals moving to Central Europe during warm phases of the last glaciation? *Quaternary Science Reviews* 30: 481-487
