Robust global ocean cooling trend for the pre-industrial Common Era

McGregor HV, Evans MN, Goosse H, Leduc G, Martrat B, Addison JA, Mortyn PG, Oppo DW, Seidenkrantz M-S, Sicre M-A, Phipps SJ, Selvaraj K, Thirumalai K, Filipsson HL & Ersek V

Nature Geoscience, vol. 8(9), 671-677, 2015

A contribution to the Ocean2k Working Group - Low Resolution team.


Additional information to accompany:

“Robust global ocean cooling trend for the pre-industrial Common Era”

McGregor et al.
Nature Geoscience
Published online 17 August 2015
DOI: 10.1038/NGEO2510

Access the article here

Access the supplementary information here

Access the PAGES press release here

The subset of metadata and data used in this analysis, the criteria by which they were selected, and the compositing code that produce Fig 2a and Supplementary Fig 1a, are available at the NCEI/WDCA repository:

For more complex questions please email your question through and the authors will respond within 24 hours.

Dr Helen McGregor
ARC Future Fellow, School of Earth Sciences and Environmental Sciences
University of Wollongong, Australia

Interview availability: Currently on International Ocean Discovery Program (IODP) cruise off NW Australia; happy to give phone or video teleconferencing interviews from the ship.

Email: This email address is being protected from spambots. You need JavaScript enabled to view it. and This email address is being protected from spambots. You need JavaScript enabled to view it.
Phone: (Aust mobile): +61 432 897 139 
Phone (ship): +1 979 845 3725 (Australia AWST)
Video teleconferencing: Using Zoom, a web-based application. Send Helen an email to arrange an appointment. Not necessary to install special software.
Twitter: @drhelenmcgregor

Associate Professor Michael Evans
Department of Geology & Earth System Science Interdisciplinary Center
University of Maryland, USA

Interview availability: Mon-Thurs 9am-5pm Swiss time (+6h US EST). Unavailable 23 to 26 Aug, 29 Aug to 2 Sept, and 3 Sept.

Email: This email address is being protected from spambots. You need JavaScript enabled to view it.
Phone (Switzerland): +41 31 631 5063
US cell phone: +1 301 276 1473 - for US callers only. Note: Author is 6 hours ahead of US EST.
Skype: skype.mnevans

Nature Geoscience

Reporter requests for paper and Nature Geoscience press enquiries: This email address is being protected from spambots. You need JavaScript enabled to view it.



Helen V. McGregor - (Lead Author)
School of Earth and Environmental Sciences, University of Wollongong, Australia

Michael N. Evans
Department of Geology and Earth System Science Interdisciplinary Center, University of Maryland, USA

Hugues Goosse
Earth and Life Institute, Université de Louvain, Belgium

Guillaume Leduc
Aix Marseille Université, CNRS, IRD, France

Belen Martrat
Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDÆA), Spanish Council for Scientific Research (CSIC), Spain
Department of Earth Sciences, University of Cambridge, UK

Jason A. Addison
U.S. Geological Survey, California, USA

P. Graham Mortyn
Institute of Environmental Science and Technology (ICTA) and Department of Geography, Universitat Autonoma de Barcelona, Spain

Delia W. Oppo
Department of Geology and Geophysics, Woods Hole Oceanographic Institution, USA

Marit-Solveig Seidenkrantz
Centre for Past Climate Studies and Arctic Research Centre, Department of Geoscience, Aarhus University, Denmark

Marie-Alexandrine Sicre
Sorbonne Universités (UPMC, Univ. Paris 06)-CNRS-IRD-MNHN, LOCEAN Laboratory, France

Steven J. Phipps
ARC Centre of Excellence for Climate System Science, University of New South Wales, Australia
Climate Change Research Centre, University of New South Wales, Australia

Kandasamy Selvaraj
State Key Laboratory of Marine Environmental Science, Xiamen University, China

Kaustubh Thirumalai
Institute for Geophysics, Jackson School of Geosciences, University of Texas at Austin, USA

Helena L. Filipsson
Department of Geology, Lund University, Sweden

Vasile Ersek
Department of Geography, Northumbria University, UK

Ocean2k-NG-2015 F2a-mod


Figure 1: Results of the global sea surface temperature compilation from Ocean2k: A cooling over the past two millenium was reversed only in the most recent two centuries. Fifty-seven previously published and publicly available marine sea surface temperature reconstructions were combined and compiled into 200-year brackets, represented by the boxes. The thin horizontal lines dividing each box are the median of the values in that box. The thick blue line is the median of these values weighted for differences in the region of the global ocean in which they were found. (More in Figure 2a in the paper and Supplementary Table S13).

 Helen McGregor 356 800px

Lead author, Helen McGregor, and Ben Petrick  discussing sampling a marine sediment core on the International Ocean Discovery Program (IODP) Indonesian Throughflow cruise, currently off NW Australia.
Credit: IODP Bill Crawford.
Download high res version (4000px)


Core on deck reuning 214-800px
Core on deck. On the International Ocean Discovery Program (IODP) Indonesian Throughflow cruise, currently off NW Australia.
Credit: Lars Reuning 
Download high res version (3900px)

The work bench and tools for opening a core on the International Ocean Discovery Program (IODP) Indonesian Throughflow cruise, currently off NW Australia.
Photo credit: Alireza Rastegar
Download high res version (5200px)


ocean-sediments 800px

Ocean secrets revealed from the creatures preserved in this sediment on the International Ocean Discovery Program (IODP) Indonesian Throughflow cruise, currently off NW Australia.
Photo credit: Jisun Kim.
Download high res version (3650px)


Helen McGregor Flat 640px.jpg

Lead author, Helen McGregor looking at a carbonate thin section on the International Ocean Discovery Program (IODP) Indonesian Throughflow cruise, currently off NW Australia.
Photo credit: IODP Bill Crawford

Mediterranean sediments fossil organic compounds extraction credit Belen Martrat 2

Climatic signals can be extracted from fossil organic compounds in these Mediterranean marine sediments.
Photo credit: Belen Martrat

0124-0610-2618-0801 view from space showing the eruption of cleveland volcano aleutian islands alaska m

Eruption of Cleveland Volcano, Aleutian Islands, Alaska is featured in this image photographed by an Expedition 13 crew member on the International Space Station. This most recent eruption was first reported to the Alaska Volcano Observatory by astronaut Jeffrey N. Williams, NASA space station science officer and flight engineer, at 3:00 p.m. Alaska Daylight Time (23:00 GMT). This image, acquired shortly after the beginning of the eruption, captures the ash plume moving west-southwest from the summit vent. The eruption was short-lived; the plume had completely detached from the volcano summit two hours later.
Credit: Stock Photo by NASA Public Domain - ISS013-E-24184 (23 May 2006). 

Other copyright free satellite footage of recent volcanic activity available at:
NASA image use policy:

 Krakatoa eruption lithograph

An 1888 lithograph of the 1883 eruption of Krakatoa. (In the public domain. Source: Image published as Plate 1 in The eruption of Krakatoa, and subsequent phenomena. Report of the Krakatoa Committee of the Royal Society (London, Trubner & Co., 1888). Author Lithograph: Parker & Coward, Britain).

The Ocean2k Working Group is a volunteer collaborative effort drawing on expertise in paleoclimatic observations, climate modeling, and data analysis. It was formed in 2011 and aims to place marine climate changes of the past century within the context of the previous two millennia.

The group currently has over 75 members, working in up to 18 different time zones.

It has a distributed leadership structure and values transparency, inclusion, and open communication; as reflected in its approach to this paper. All data and methods in this paper are transparent and publicly available for anyone to replicate the findings.

From the outset this group has broken new ground, even in the way they work, preferring to collaborate virtually across the globe using teleconferencing software and other means of electronic communications.

In October 2015, after more than four years, many group members finally met each other in person at their first workshop in Barcelona, Spain, where they planned Phase 2 of Ocean2k.

More at:

Read more about the Ocean2k way in this Future Earth blog piece: "Virtually" Ocean2k.


Past Global Changes (PAGES) was established in 1991 to facilitate international research into understanding past changes in the Earth system to improve projections of future climate and environment, and inform strategies for sustainability. It receives funding mainly from the Swiss and US national science foundations. PAGES is sponsored by Future Earth and the International Geosphere-Biosphere Programme.

More at:

9 September 2015

Un estudio revela que la Revolución Industrial acabó con 1800 años de enfriamiento de los océanos


La Revolución Industrial puso fin a 1.800 años de enfriamiento de los océanos 


La Revolució Industrial va posar final a 1.800 anys de refredament dels oceans, segons un estudi 


La Revolución Industrial acabó con 1.800 años de enfriamiento de los océanos
EFE Futuro 


La Revolución Industrial puso fin a 1800 años de enfriamiento de los océanos


La Revolución industrial puso fin a 1800 años de enfriamiento de los océanos
Servicio de Información y Noticias Científicas 


The Industrial Revolution put an end to 1,800 years of ocean cooling

7 September 2015

Study: Oceans warming 20x faster than they cooled in past millenium
The Diamondback - University of Maryland Independent Student Newspaper

2 September 2015

Frequent volcanic eruptions likely cause of long-­term ocean cooling
Environmental Research Web - Newswire

1 September 2015

Filipsson in Nature Geoscience study: volcanic eruptions cooled the climate
Young Academy of Sweden

25 August 2015

Ocean2k information
China Ocean News (in Traditional Chinese)

23 August 2015

Volcanic Eruptions Led To 1800 Year Cooling Period On Earth
Design & Trend

21 August 2015

El enfriamiento de los océanos se detuvo con la Revolución Industrial
Innova Spain (Portal líder de la innovación en español)


La entrada en la revolución industrial detuvo el enfriamiento de los océanos
Radio Internacional de Francia


Radio: Lectura: Vida en el Planeta/ La Revolución Industrial detuvo el enfriamiento de los océanos
Radio Internacional de Francia


Le réchauffement global a mis fin à 1800 ans de refroidissement des océans
Agence News Press France

20 August 2015

Le réchauffement global a mis fin à 1800 ans de refroidissement des océans


La revolución industrial detuvo el enfriamiento de los océanos
Agibilis  (Portal digital)

19 August 2015       

L’Homme a mis fin à 1 800 ans de refroidissement des océans
National Geographic - French version


1,800 Years Of Global Ocean Cooling Halted By Global Warming
Eurasia Review


Le réchauffement met fin à 1.800 ans de refroidissement des océans


Human-Caused Global Warming Halts 1,800 Years of Global Ocean Cooling


La Revolucion Industrial fue capaz de acabar con la Pequena Edad de Hielo


De Morgen - Belgium (link?)


La Revolución Industrial acabó con la «Pequeña Edad de Hielo»
Full story pdf
ABC (Diario nacional)


La première - National radio broadcaster Belgium (link?)


La revolución industrial detuvo un proceso de 1.800 años de enfriamiento oceánico

18 August 2015

Televisión Española-TVE
Public-service broadcaster of Spain


Cadena SER
Spain's premier radio network


La revolución industrial detuvo el enfriamiento de los océanos
México Migrante


"Virtually" Ocean2k
Future Earth Blog


Could we harness volcanoes to cool the world?


Global warming halted 1,800 years of ocean cooling process
DownToEarth - India


Les océans bien plus froids jusqu’en 1800


Les océans bouleversés par l’ère industrielle
Le Devoir - Canada


L'ère industrielle aurait stoppé le refroidissement des océans - Radio France International


Robust 1,800 year cooling trend reported
Reporting climate


Global warming erases centuries of ocean cooling
CBS News


Global Warming Is Reversing 1,800 Years of Natural Ocean Cooling
Jewish Business News

17 August 2015

L’ère industrielle a mis fin à 1 800 ans de refroidissement des océans
Le Monde


Dans l’océan, les volcans ont jeté un froid
Le Soir (Belgium)


1,800 years of global ocean cooling halted by global warming


Modern industrialisation killed ocean cooling


Global warming is reversing 1,800 years of natural ocean cooling, study finds
The Independent


L'océan tempère le réchauffement climatique. Pour l'instant du moins...
RTBF - National Broadcaster Belgium



Frequently asked questions

1. What's new about the observation of a 2,000 year cooling in a global average sea surface temperature estimate?

This is the first study that synthesizes only surface ocean reconstructions. The world's oceans absorb vast amounts of heat and as such regulate the climate on long timescales. Understanding how this major component varies, thanks to the ocean synthesis, means we can compare different parts of the climate system to see how they interact. Furthermore, by comparing the ocean synthesis to climate model simulations we learn more about what drives global climate variations (e.g. volcanic forcing, greenhouse gases, solar variations).


2. How do volcanic eruptions cause the climate to change?

If volcanic aerosols are injected into the stratosphere, they may spread rapidly around the globe. The primary effect of these aerosols is cooling, as they reflect solar radiation to space before it becomes part of Earth's radiation balance. The cooling lasts as long as the aerosols are not removed from the stratosphere, which is generally in the order of a few years (Alan Robock's website for many citations; Hansen et al. 1992 link). 

3. Were there lower rates of volcanism in the last 100-200 years?

See Figure 4c of the paper.  It appears that the last 200 years were not unusual in terms of rates of volcanic activity than previous 200-year intervals in the past millennium. Below is the timing of the 40 largest eruptions since 800 CE according to Sigl et al. (in his Fig. 3, 2015, link).

5 in the 1801-2000 CE interval
4-5 in the 1601-1800 CE interval
3-4 in the 1401-1600 CE interval
5 in the 1201-1400 CE interval
3 in the 1001-1200 CE interval
3 in the 801-1000 CE interval

The 1801-1815 period appears to include 2 of the larger events, although definitely not the largest events over the 801-2000 period.

4. Could there still be a cooling signal from the volcanic forcing even with greenhouse gases causing warming?

Yes; to first order, the response to volcanic forcing and to greenhouse forcings are independent, meaning they can superimpose on one another, reinforcing or cancelling out the response of one by the other. For the 20th Century greenhouse gas warming swamps any volcanic cooling signal.

5. Does this study mean that if there are a lot of volcanic eruptions we can stop global warming?

Volcanic eruptions counteract the warming effects of greenhouse gases but we can't predict when volcanic eruptions will occur. Alan Robock (Rutgers University, USA) and others have shown that large volcanic eruptions can cool the climate (link), but in their report to the US National Academies of Science (link) they concluded that mitigation was cheaper than geoengineering solutions. Aerosols from volcanic eruptions contribute to natural climate variability, but global warming is occurring on top of natural climate variability, and the associated natural forcings do not appear to explain the observations for the 20th century (Stott et al. 2006; Bindoff et al. 2013).

6. Can volcanic eruptions be triggered to stop global warming?

This is well beyond our expertise, and not only likely to be unfeasible, but also unpredictable and uncontrollable.

7. So all these volcanic eruptions that stop flights are good for the planet?

Depending on the amount of aerosols released and to what altitude they are injected, they can counteract the warming effect of greenhouse gases for regions.

In the troposphere the aerosols may create health hazards, as for instance in the aftermath of the Mt St Helens eruption in the USA in 1980. If the aerosols get into the stratosphere and mix globally, they can cool the climate for the subsequent year (e.g. Hansen et al. 1992).  However, the greenhouse gases stay in the atmosphere for decades to centuries, even if we stop emitting them today (Ciais et al. 2013 (link); Collins et al. 2013 (link), and references therein).

Furthermore, the global temperature is just one aspect of the problem. Volcanic eruptions may reduce the temperature and partly compensate for global warming at the global scale for a few years but the effects of anthropogenic and volcanic forcings can be very different at local scale and for precipitation, leading to no compensation or even adding to the effects in some cases.

8. How is this study different from previous work?

A millennial cooling was observed by Mann et al (1999 link) in their analysis and reconstruction of Northern Hemisphere mean surface air temperature anomalies for 1000-2000 CE from terrestrial data sources (their Fig 3). 

They speculated this cooling was related to orbital forcing, and they suggested that centennial variations arose from solar irradiance forcing (Mann et al 1999 link). Crowley (2000 link) suggested that volcanic forcing might be associated with the Little Ice Age cooling in northern hemisphere mean temperature anomaly, but showed (in his Fig 5) that the residual pre-anthropogenic trend (1000-1850 CE) was not different from zero.

Distinct from these interpretations and that of Liu et al (2014 link), which also attributed the last millennium cooling to solar and volcanic forcing, our single and cumulative forcing analysis (Fig 4) suggests that a change in the frequency of volcanic activity, and possibly also land use forcing are the primary forcing factors associated with the cooling trend.

9. What was the influence of volcanism on global temperatures during the Medieval Climate Anomaly and in the 20th Century?

If the Medieval Climate Anomaly (MCA, also known as the Medieval Warm Period) is defined as a warmer period within the interval 900-1200 CE, then this appears to have been a period without much volcanic activity (Fig 4c) and shows no anomaly with respect to the 0-2000 CE period (Supp Section 7, Table S13).

This is partly an artifact of its timing in the middle of our study period and the data standardization procedure. The scaled results in Supp Fig S6 for the 801-1800 CE period also suggest the MCA was slightly warmer (~0.2° C) than the remainder of the pre-anthropogenic interval 1201-1800). It's not inconsistent to expect a lack of volcanic events to result in an increase in warming due to a reduction in the reflectivity of the atmosphere.

The 1801-2000 CE period has volcanic activity not very different from that of the 1201-1800 CE period, but shows a small but significant warming from the previous century (Supp Info, Section 7, Table S13).

Large-scale climate variability

10. Why doesn't the Medieval Climate Anomaly appear to occur globally in your results, and why does the Little Ice Age appear to occur globally?

Several studies have suggested that the so-called Medieval Climate Anomaly (a period of pervasive warming in the Northern Hemisphere from around 900-1200 CE) was actually not homogenously warm at the global scale (PAGES 2k Consortium 2013 (link)). Maximum temperature appeared to occur at different times in different regions, with some regions not displaying any particular temperature increase compared to the long trend during that period. Furthermore, when averaging over wide regions and 200-year time scales, as we did in this study, the maximum temperatures appear less clearly. Our findings are in line with the PAGES 2k Consortium's analysis of terrestrial temperature reconstructions, which also found the Medieval Climate Anomaly did not have a global warming signal. This further shows the value of ocean records which can provide a global temperature signal, which supports previous analyses.

The cooling is more homogenous for the Little Ice Age and thus clearer in our results. Our study confirms the role of volcanism in the cold conditions during the Little Ice Age. However, the results of single forcing experiments (Fig 4b) suggest that land use forcing may also be a cause of the LIA cooling we observe. A reduction in solar irradiance has been suggested to play a role too but, in accordance with many other studies, we were not able to detect its influence and the role of solar forcing was not required to explain the reconstructed trends.

The data, the analysis, and the uncertainties

11. Where are the data?  I want to re-examine this work.

All results are derived from publicly archived datasets associated with peer-reviewed publications, and were found by searching the metadata of the NCEI and PANGAEA repositories. 

The subset of metadata and data used in this analysis, the criteria by which they were selected, and the compositing code that produce Fig 2a and Supplementary Fig 1a, are available at the NCEI/WDCA repository:

12. What about the proxies used in the reconstructions - what time periods did they show, what was the global distribution, and what can and can’t they tell us?

The reconstructions we gathered were themselves derived from measurements of the C37 alkenone unsaturation index (UK37) in sediments, Mg/Ca ratio in foraminifera, the TEX86 organic index, Sr/Ca in coral, relative abundance of Dinoflagellate cysts in marine sediments, and planktonic foraminiferal assemblages in marine sediments.

Depending on the nature of the observation, the paleoclimatic archive, and the choices made in sampling, they can tell us about local-to-regional SST on seasonal to bicentennial time resolution, with a response that is seasonal to annual in nature (Supp Info, Section 6).  They cover at least some time period within the 0-2000 CE period (Supp Info Section 1), their spatial distribution is shown in Fig 1 (white circles) and in Supp Info Section 6 by data type and categorization (see Fig 2b and S9). 

Because the observing network is sparse and includes multiple data types, resolutions, chronology resolution and accuracy, they are best considered, to first order, in the whole rather than regionally, and at coarse rather than fine time resolution.

13. Why was the data combined into 200-year brackets?

The dataset was composed of individual records that had time resolutions of 1 to 2 measurements per 200-year period, to hundreds per 200-year period (Supp Figure 1a). Each record was averaged into the consecutive 200-year brackets, which gave the same number of data points for each record (one for each 200-year window for the past 2000 years = 10).

To allow for the most inclusive (largest) dataset and focus on variations on century/longer timescales, and to avoid biasing the results toward records with higher resolution, we averaged all records to 200-year resolution. In addition, the 200-year brackets also accounted for how well we know the age of the variations.

14. Isn't the network of reconstructions used for the synthesis biased toward the North Atlantic and the periphery of the ocean basins? How could it be representative of a global change?

The results are certainly biased toward these regions. But for century-scale averages, variations are smoothed in space, probably because of stirring by winds from day to day of surface ocean. We can see this from analysis of climate simulations at 200-year average resolution for the observing network compared to the "true" average from the same simulations (Fig 1, Supp Fig S7).

15. How robust are the results, what are the limitations and assumptions in the reconstructions, analyses and models?

Each individual sea surface temperature reconstruction is subject to uncertainty in its dating, in the precision and accuracy of the observed measure, and in the precision and accuracy of the conversion of the observation into an SST reconstruction. If these uncertainties are independent across records because the records were produced independently, then compiling the records together should mean there is less uncertainty in composite median measures than in the individual records. Because the ocean, and sedimentation processes tend to smooth and integrate changes over centennial timescales, we think the observed multicentennial cooling trend is robust to the uncertainties described by Fig 2 of the paper.

The individual model simulations are subject to uncertainty arising from imperfect knowledge of the forcing functions, limited resolution in space, time, and of some processes operating in the climate system. Although the models are all forced by similar external radiative forcing series, and are therefore all subject to uncertainties, we rely on a composite across several simulations that mimics the available observations in time and space to make a fair comparison with the observations.

The warming trend over the last 200 years

16. Does this composite agree with direct historical observations of sea surface temperature over the last 200 years?

This composite differs from many other paleoclimate reconstructions published recently (e.g. Mann et al. 2008,  PAGES 2k Consortium, 2013 (link)) in that it is a composite of local sea surface temperature reconstructions at 200-year resolution, rather than a reconstruction of large-scale patterns or averages at annual resolution, and age uncertainties are therefore quite large. Because of this, the dataset and analysis in this paper are not designed for looking at detailed changes within the past two centuries.

In contrast to the terrestrial reconstructions (including the PAGES 2k Consortium (2013) paper, which show contrasting trends within its analysis), the global ocean records show the same trajectory across all of the records, i.e. the oceans smooth out short-term atmospheric variability and are arguably a more accurate way of providing a measure of long-term global temperature (hence the significance of this study)

But our best attempt at this suggests qualitative agreement between the Ocean2k Low Resolution synthesis and historical observations (more details can be found in the Supplement to this paper). We do find that the change from one 200-year period to the next is either a cooling or no change - with the exception of the change into the most recent 200-year period (see Fig 2 in the paper; or Table S13 in the Supplement).

17. Could the warming found in the last ~200 years just be the Earth's climate naturally correcting itself?

To the best of our knowledge volcanic eruptions are not predictable very far in advance, it is unlikely the Earth is actively modulating its climate in this way.  But could the recently observed warming merely be a recovery from the volcanically induced cooling? Some part of the recent observed warming is possibly recovery from pre-anthropogenic volcanic activity, but it is unlikely to explain all of it. Here is why:

1. Our best estimates of the cooling trend from the Ocean2k observations (Supplementary Section 4; Table S6; Fig S6) are about -0.3 to -0.4° C per 1000 years for the 2000 year long interval and about -0.4 to -0.5° C per 1000 years for the pre-anthropogenic last millennium.

2. The time for mean surface temperature to recover from individual events is around a few years (e.g. Hansen et al. 1992 (link)). It appears that clustering of large events within a small amount of time is what created the cooling trend over the time that we observed.

3. From historical observations, realistically forced simulations, and detection and attribution studies (e.g. Stott et al. 2006 (link); Bindoff et al. 2013 (link), Ch 10, Fig. 10.1, pg 879), our best estimate is that since 1860, mean surface temperature has increased about 0.5 to 1.5° C over 150 years, or about 0.3 to 1° C per 100 years. This is despite some significant recent volcanic events (Agung, El Chichón and Pinatubo).

4. The recent warming is larger ([|~1° C / ~-0.5° C| = 2) and more rapid by a factor of roughly 20: (| [~ +1° C/100 years]/[~ -0.5/1000 years] | = 20) than the volcanically induced cooling trend over the last 1-2 preceding millennia.

5. We don't have a mechanism to plausibly amplify a 'volcanic rebound' as required by these results, but we do have plausible mechanisms for explaining the observations using realistically forced climate simulations for the 20th century. When we compare the observed global mean surface air temperature change to that simulated when there is no human-caused greenhouse gas forcings, the simulation doesn't accurately produce the level of warming we have observed in the 20th Century.

18. When exactly in the 1800s did the warming trend start?

Based on our results we are unable to answer this question for the reasons outlined in Question 16 above: We have compiled here a composite of local SST reconstructions at 200-year resolution, rather than a reconstruction of large-scale patterns or averages at annual resolution, and therefore the age uncertainties are quite large. Because of this, the dataset and analysis in this paper are not designed for looking at detailed changes within the past two centuries.

19. Why doesn't your study have a stronger global warming signal?

We averaged our data into 200-year windows. A sharp change, as induced by global warming, is 'averaged out' in this process.

There are other studies based on annual growth bands in corals that show the year-to-year changes in detail over the past 400 years and these studies show a distinct and persistent global warming trend. See the recent Ocean2k Paleoceanography paper by Tierney et al. 2015 (link).




Category: Highlights | Journal articles