A network of peatland surface-moisture reconstructions is providing a richly detailed, synoptic-scale perspective on past hydroclimate variability in many regions, well suited to investigate the spatial structure and dynamics of past hydroclimate changes.

Synoptic networks of proxy records of hydroclimate variation provide an important means for identifying long-term relationships between oceanic forcing and continental-scale patterns of decadal- to centennial-scale drought variability, and for assessing responses of the coupled ocean-atmosphere system to changes in external forcing. Tree-ring records provide the gold standard in this context, because of their demonstrated hydroclimatic sensitivity, temporal precision and accuracy, robustness of proxy inferences, and widespread distributions in space. However, tree-ring records are limited in temporal depth and spatial coverage, and inferences can be confounded by other factors, particularly in humid regions. Alternative archives are desirable to extend temporal depth, corroborate tree-ring inferences, and add complementary information and sensitivity at different time and spatial scales. Among the alternative archives are ombrotrophic peatlands, which are sensitive to hydroclimatic variation at decadal timescales, capable of sub-centennial chronological precision and accuracy, contain multiple paleohydrological and paleoclimatic proxies (Fig. 1a), and are widely distributed at mid- to high latitudes in the northern and southern hemispheres. Comparison of peatland proxies with instrumental records...
confirms the robustness and temporal precision of paleoclimatic inferences (Fig. 1b). Over the past few years, significant advances have been made in our understanding of the response of peatland systems to climate changes, facilitating the climatic interpretation of peatland paleoenvironmental records. Peatland surface-moisture reconstructions generally reflect the length and severity of the summer moisture deficit, which in ombrotrophic peatlands is primarily controlled by summer precipitation (Charman, 2007; Charman et al., 2009). Temperature effects are secondary, manifested through evapotranspiration (Charman, 2007; Charman et al., 2009). Not surprisingly, good relationships exist between surface-moisture reconstructions and integrative hydroclimate indices such as the Palmer Drought Severity Index (PDSI) (Booth, 2010). However, because peatlands may undergo long-term developmental changes unrelated to climate (Charman et al., 2006), and are adaptive systems with internal processes that confer some degree of self-regulation (Dise, 2009), paleoclimate responses may not be recorded equally strongly at all temporal frequencies. For example, millennial and multi-millennial changes in surface moisture vary greatly among nearby sites in the United Kingdom (Charman et al., 2006), although shorter-term perturbations are generally coherent there and elsewhere in Europe and North America (Booth et al., 2006). Therefore, the hydroclimatic signal in peatland records may be most robust at multi-decadal to sub-millennial timescales.

Investigating drought climatology
An emerging network of peatland records in North America is providing new perspectives on moisture variability in humid regions, complementing and extending the tree-ring record from semi-arid regions, as well as hydroclimate histories derived from other natural archives. These efforts are motivated by the revelation that characteristic spatial modes of drought and precipitation variability, often with important centers of action in humid regions, have been driven in part by oscillations in sea-surface temperature (SST) anomalies sometimes spanning decades or more (Dai et al., 2004; McCabe et al., 2004, 2008; McCabe and Palecki, 2006; Seager et al., 2008; Woodhouse et al., 2009) (Fig. 2). Modeling efforts underscore the importance of these teleconnections, and are beginning to reveal potential underlying mechanisms (Sutton and Hodson, 2005, 2007; Seager et al., 2007). However, our knowledge of SST variability and associated teleconnections is primarily derived from a mere century of instrumenta-

tal records, and rising global temperatures are expected to alter the oceanic forcing of drought patterns in the coming decades (Jansen et al., 2007). In addition, the relative importance of oceanic forcings (i.e., Atlantic vs Pacific influences) on North American hydroclimate is still unclear (Sutton and Hodson, 2005; McCabe and Palecki, 2006; Cook et al., 2007; Goodrich, 2007; Graham et al., 2007; Seager et al., 2007; Feng et al., 2008; McCabe et al., 2008), as are relationships to synoptic modes of atmospheric circulation (Trouet et al., 2009; Helama et al., 2009) and external forcing (i.e., solar variability and volcanism). Delineation of past spatial modes of moisture variability, when interpreted in conjunction with the growing body of proxy SST records and estimates of changes in external forcing, provides a means to assess long-term dynamics of the coupled ocean-atmosphere system.

When viewed along with the tree-ring record and other natural archives, peatland reconstructions from the Great Lakes region of eastern North America reveal that many high-magnitude fluctuations in water balance during the past 3 ka were spatially extensive, extending from the western United States into eastern North America (Fig. 3; Cook et al., 2004; Mason et al., 2004; Booth et al., 2006; Shuman et al., 2009). Increased multidecadal- to centennial-scale hydroclimate variability also characterized intervals with widespread drought (Fig. 3a). These widespread droughts may represent amplification or persistence of modes of decadal- to multidecadal hydroclimate variability similar to that of the last century (Fig. 2). For example, peatland records clearly indicate that Medieval Climate Anomaly (MCA) droughts, which have been well documented in the western US and Great Plains (central North America) (e.g., Cook et al., 2004; Mason et al., 2004; Daniels and Knox, 2005; Sridhar et al., 2006; Meko et al., 2007; Miao et al., 2007), also extended deep into the Great Lakes region (Booth et al., 2006; Shuman et al., 2009) (Fig. 3a). The widespread pattern of drought is similar to a mode of variability experienced during the 20th century (Fig. 2a), although more records are needed to fully test this hypothesis, particularly from humid regions at mid- to high-latitudes.

Tree-ring based reconstructions of PDSI from the Great Lakes region do not clearly record the MCA droughts (Herweijer et al., 2007); therefore, hypotheses on the mechanisms underlying these events have tended to focus on atmospheric and ocean dynamics that induce drought in western North America only, such as prolonged La Niña-like conditions in the tropical Pacific (Cook et al., 2004, 2007). Although
the eastward and northward extent of the droughts in North America is still unclear, the occurrence of significant droughts in the peatland records from the Great Lakes suggests that additional hypotheses regarding mechanisms and dynamics should be explored, including modulation of Pacific SST anomalies. Recently, MCA modeling efforts have started to incorporate this idea (Seager et al., 2007; Feng et al., 2008). For example, using a set of modeling experiments, Feng et al. (2008) found that cold eastern tropical Pacific SST anomalies could explain the intensity of the MCA droughts, a warm North Atlantic could regulate the geographic extent of the droughts, and the combined influence of SST anomalies in both basins was necessary to explain MCA drought severity and persistence. Similar patterns have been associated with widespread midcontinental drought during the past century (Fig. 2a, b) (McCabe et al., 2004, 2008; Booth et al., 2006). Continued development of the peatland network is currently underway in North America and in other circum-boreal regions of the Northern Hemisphere, and coupled with analyses of instrumental data, data-model comparisons, and dynamic modeling experiments will allow critical testing of this and other hypotheses on the mechanisms and dynamics of widespread, prolonged drought.

Acknowledgements

Research supported by grants from the National Science Foundation to Booth (EAR-0092441, ATM-0625298) and Jackson (ATM-0402660).

Data

References

For full references please consult: http://www.pages-igbp.org/products/newsletters/ref2010_1.html

Seager, R., Kushnir, Y., Ting, M., Case, M., Naik, N. and Miller, J., 2008: Would advance knowledge of 1930s SSTs have allowed prediction of the dust bowl drought? *Journal of Climate*, **21**: 3261-3281.

