the other hand, years of negative NAO are characterized by colder and drier winters. It appears that these lakes are located at a sensitive climatic boundary, where just a few degrees warming during the winter (+NAO) results in a considerably shortened period of snow cover, even to the point where no persistent snow cover forms (Vehviläinen & Lohvansuu, 1991; Vehviläinen & Huttunen, 1997). As a consequence, the peak discharge in spring is severely reduced, catchment erosion is significantly lower and less allochthonous mineral matter is transported and deposited on the lake bottom. One period of weakened spring discharge and erosion has been identified from Finnish varved sediments to have occurred between AD 980–1250 (Saarinen et al., 2001, Tiljander et al., in press). This period coincides with the Medieval Climate Anomaly. Its climate implications are under intensive investigation.

However, due to local system dynamics, it is evident that the relationships between external forcing factors and the annual accumulation of mineral/organic matter are neither linear nor stable over time. Post-isolation catchment stabilization, vegetation succession, human disturbance and extreme events like forest fires exert a considerable influence on catchment erosion and the nature of the varved records. At the end of the day, the properties of clastic-organic varves in Fennoscandia reflect the annual flux of mineral matter to the sedimentary basins via a multitude of interacting factors. The main aim of future work is to use a variety of analytical methods, such as high-resolution digital image analysis (e.g. Tiljander et al., 2002, Ojala & Francus, 2002, Saarinen & Petterson, 2002), mineral magnetism (Snowball et al., 1999), pollen, and charcoal analysis to discriminate between the major factors that drive the sedimentation.

References
Ojala, A.E.K. and Saarinen, T. 2002: Palaeosecular variation of Earth’s magnetic field during the last 10,000 yrs based on the annually laminated sediment of Lake Nautajärvi, central Finland. The Holocene 12: 391–400.

For full references please consult: www.pages-igbp.org/products/newsletters/het2003_2.html

doi:10.1016/S0265-114X(03)00060-7

14C as an Indicator of Solar Variability
TOMASZ GOSLAR
Adam Mickiewicz University, Faculty of Physics and Poznan Radiocarbon Laboratory, Poznan, Poland; goslar@radiocarbon.pl

Introduction
The quasi-constant concentration of 14C on the Earth is maintained by a balance between its radioactive decay and its production from atmospheric nitrogen. This production is possible due to the high-energy protons from cosmic radiation. Atoms of 14C enter the biogeochemical cycle, where carbon circulates between the atmosphere, terrestrial biosphere and the oceans. Since the characteristic exchange rates between reservoirs and times of circulation within individual reservoirs are significant with respect to the half-life of 14C, radiocarbon concentration on the Earth is not uniform, being the highest in the atmosphere and distinctly lower in the deep oceans.

Charged particles emitted from the Sun produce a magnetic field in interplanetary space. This field inhibits penetration of low-energy cosmic-ray protons into the center of the solar system. As a rule, an increase in solar activity corresponds to a decrease in the flux of galactic cosmic rays impinging on the Earth. The intensity of cosmic radiation in the atmosphere is also modulated by the Earth’s magnetic field. To first-order approximation, the globally averaged 14C production rate is inversely proportional to the square root of the geomagnetic dipole moment (Lal, 1988).

Reconstruction of Atmospheric 14C Levels in the Past
Past variations in atmospheric 14C concentration have been reconstructed as a “by-product” of radiocarbon calibration. During the Holocene period, this calibration is based on 14C ages of bidecadal or decadal tree-ring samples, dated absolutely by means of dendro-
chronology (Stuiver et al., 1998). These data document ±20‰ fluctuations in atmospheric Δ^{14}C, usually 100-300 years long, superimposed on an almost monotonic downward trend from ca. 120% at the beginning of the Holocene to ca. 0% at the end of the 19th century.

Over the last few centuries, 14C concentration has also been measured in single-year tree-ring samples (e.g. Stuiver and Braziunas, 1993). These data reveal quasi-periodic Δ^{14}C fluctuations with an amplitude as low as 2.5‰.

The Relationship Between 14C Production and Solar Activity in Recent Centuries

As noted above, there is a more direct relationship between solar activity and the rate of 14C production than 14C concentration. Fluctuations in 14C concentration can be caused by changes in 14C production; this may also reflect solar and/or geomagnetic variability, as well as changes in the global carbon cycle. In general, no single one of these causes can be isolated from the others unless additional information is available. Such information is provided by records of 10Be in the ice caps of Greenland and Antarctica. Like radiocarbon, 10Be is produced in the atmosphere by cosmic rays, however it falls out almost immediately, hence its concentration in sediments reflects mostly local cosmogenic production rates. Fine correlation between 100- to 300-year-long features of the 14C and 10Be records of the last and earlier millennia indicate that these features are related to Sun-induced changes in production rate (e.g. Bard et al., 1997). On the other hand, model considerations using archeomagnetic data lead to the conclusion that the long-term decrease in 14C results from secular changes in the geomagnetic field (Stuiver et al., 1991).

In historical records, solar activity is quantitatively represented by the number of sunspots (Wolf number). Although correlation between sunspot number and past 14C changes has been discussed in numerous papers, only a few have directly compared sunspot number with 14C production rate (e.g. Stuiver and Quay, 1980). This correlation is presented here (Fig. 1). 14C production rates are calculated from annual values of 14C concentrations (Stuiver and Braziunas, 1993) with the PANDORA model of the global carbon cycle (used, for example, by Goslar et al., 2001).

The maximum 14C production rate in the last millennium occurred between AD 1645 and 1715, during the period when sunspots were almost lacking (Maunder Minimum).

![Figure 2: Estimate of Sun-induced fluctuations in 14C production rate over the last 10,000 years. Right-hand side: Frequency distribution of bidecadal production rate averages. The sunspot number scale is based on the correlation in recent centuries.](image)

Similar maxima, between AD 1290-1390, 1400-1600, and 1800-1860 are known as Wolf, Spörer and Dalton, respectively. Since the nineteenth century, atmospheric radiocarbon concentration has been seriously affected by fossil fuel combustion and nuclear tests. The first effect can be taken into account in the calculations, based on the known history of fossil fuel consumption. The second effect precludes model calculations of 14C production after 1950.

Production of cosmogenic isotopes depends on both the Earth's and the Sun's magnetic field. It can be expressed as:

$$Q = C \cdot A_{\text{geo}} \cdot A_{\text{sol}}$$

where C denotes the production rate by cosmic rays not attenuated by solar and geomagnetic fields, and A_{geo} and A_{sol} are the respective attenuation factors. The latter geomagnetic factor has been modeled using a reconstruction of the Earth's magnetic field, as in previous studies (e.g. Goslar, 2001).

There is a striking correlation between mean sunspot number in consecutive sunspot cycles (S) and average values of 14C production (Q). Although annual values of 14C production also correlate significantly with annual sunspot number, the single-year Q-S regression coefficient is distinctly lower than that for cycle averages. One reason for this is that annual values of Q are different in different minima of solar activity, despite very similar minimum sunspot numbers (i.e. close to 0). This means that solar activity expressed by the sunspot number is not unequivocally related to 14C production. Indeed, it has been known for some time that sunspots are not directly tied to the magnetic properties of the solar wind. A more direct measure of solar magnetic field properties is provided by Aa indices, which reflect the magnitude of short-term magnetic activity measured in two antipodal laboratories. Both sunspot number and Aa index reveal an 11-year cycle but, unlike sunspots, the minimum Aa differs for...
different values appear correlarive to the cycle-averages of sunspot numbers (Fig. 1). Nevertheless, since reconstruction of Δ¹⁴C in the Holocene relies on bidecadal data, in using it as a proxy of solar activity, the relationship between Q and S cycle-averages still seems applicable.

Characteristic Features of ¹⁴C Production in the Holocene
The Δ¹⁴C record in the Holocene allows the ¹⁴C production rate to be calculated provided the parameters of the global carbon cycle are known. In previous studies (e.g. Stuiver and Braziunas, 1988), it has usually been assumed that those parameters were constant and the same as today. The record of past ¹⁴C production rates calculated according to this assumption shows 100- to 300-year-long fluctuations superimposed on a long-term trend. Assuming that this trend reflects the changes in geomagnetic field, Sun-induced changes of the ¹⁴C production were calculated (Fig. 2).

The distribution of Q/Qo values has no right-hand tail (i.e. almost no value exceeds 130%). This is consistent with equation 1, which requires that the attenuation not be larger than 1 (as it was, for example, during the Maunder Minimum). This consistency provides additional support for the interpretation of the obtained record in terms of past solar activity.

Stuiver and Braziunas (1988) noted distinct similarities between fluctuations in ¹⁴C production, and distinguished nine Maunder-type and eight Spörer-type maxima. Calculations using up-to-date ¹⁴C calibration data (Stuiver et al., 1998) suggest that some maxima, previously qualified as Maunder, are distinctly shorter (Fig. 3). Since this group includes the Wolf maximum (AD 1290-1390), we propose referring to these shorter events as Wolf-type.

References

For full references please consult: www.pages-gbp.org/products/newsletters/ref2003_2.html

Reconstruction of Low- and High-Frequency Summer Temperature Changes From a Tree-Ring Archive of Fennoscandian Forest-Limit Scots Pine

Matti Eronen¹, Markus Lindholm², Samuli Helama¹, Jouko Meriläinen² and Mauri Timonen³

¹Department of Geology, University of Helsinki, Finland; matti.eronen@helsinki.fi; samuli.helama@helsinki.fi
²Saima Centre for Environmental Sciences, Savonlinna, Finland; markus.lindholm@joensuu.fi; Jouko.Merilainen@joensuu.fi
³Finnish Forest Research Institute, Rovaniemi, Finland; Mauri.Timonen@metla.fi

Material and its Ecogeographical Setting

Tree-ring samples of Scots pine (Pinus sylvestris L.) were collected from living trees, dead standing logs, old buildings, and subfossil wood from peat-bogs and small lakes (Eronen et al., 2002). The selected dataset containing 1081 tree-ring series. The latter archive is the major source of samples. The area is situated between 68° and 70° N, 20° and 30° E, in the northern Fennoscandia (Fig. 1). Homogeneity of tree-ring data over the geographical distribution was demonstrated (Lindholm, 1998). Highly consistent tree-ring chronologies may be built from diverse sites as well as from various age-classes of pine trees (Lindholm et al., 2000; Lindholm et al., submitted).

Chronology Temporal Ranges

At present, the northern Finnish supra-long pine chronology spans from 5520 BC to AD 2001 (Eronen et al., 2002). As dendrochronological cross-dating yields annual resolution to tree-ring data, inter-annual-to-decadal scale variability is resolved by most methods of building chronologies. Variation at the multi-centennial time-scale has recently been successfully extracted from the northern data using specified techniques in signal extraction (Helama et al., 2002). Annual accuracy of dendrochronological dating is a prerequisite for several paleoclimate examinations, including quantitative multi-disciplinary comparisons, multi-proxy reconstructions and climate forcing studies (e.g. Ogurtsov et al., 2002). The further extension of this chronology may become possible given that there is a gap between the time of arrival of pine, as indicated by pollen analysis, and the beginning of the earliest tree ring series (Eronen et al., 2002). On the other hand, possibly conditions for