Thick lacustrine sequences from southern Europe provide an opportunity to develop complete and high-resolution pollen records spanning multiple glacial-interglacial cycles and showing the response of vegetation to climate variability. The sequences discussed here represent the four longest continuous European pollen records and are located between 39 and 45°N, forming a West-East transect: (i) Lac du Bouchet [1,2] (44°55′N, 3°47′E; 1200 m above sea level [asl]) and Praclaux [3] (44°49′N, 3°50′E; 1100 m asl), Massif Central, France. (ii) Valle di Castiglione [4] (41°53′30″N, 12°45′35″E; 44 m asl), central Italy. (iii) Ioannina [5,6] (39°40′N, 20°51′E; 470 m asl), northwest Greece. (iv) Tenaghi Philippon [7–9] (41°10′N, 24°20′E; 40 m asl) northeast Greece.

The published chronostratigraphical scheme for each pollen sequence was used for broad correlations with the marine sequence and assignments to individual isotopic stages. Each data set was then aligned to a target, the SPECMAP stacked δ18O record [10] (Fig. 10). ‘Glacial-to-deglacial’ transitions were used as the tie points on the basis that these transitions have been relatively rapid and the response of vegetation was essentially synchronous within the error estimates for the marine chronology. Given that the sites are located relatively close to glacial tree refugial areas, lags arising from delayed immigration of tree populations were considered to be minimal. This simple step of placing the records on a common timescale, although it eliminates any assessment of leads and lags, greatly facilitates comparison between the different types of proxy evidence in terms of their overall structure and character.

The four pollen sequences display a close similarity to the SPECMAP stack on glacial-interglacial timescales suggesting that the many substages into which the oceanic record is divided are also appropriate for viewing the continental record. It has long been appreciated that the subdivision of Stage 5 is necessary to the understanding of the last interglacial, but the data show a similarly complex structure for earlier deglacial stages, with alternating forest and open vegetation intervals corresponding to the isotopic variations.

While Figure 10 demonstrates the overall similarity between the terrestrial

![Figure 10: Comparison of terrestrial pollen records and the marine isotope sequence. For the terrestrial records the arboreal (AP) minus Pinus (solid line) curve has been used for correlations and tuning, but the AP curve including Pinus (dotted line) is also shown. Marine isotope stages are indicated. Diamonds show the control points used for tuning. A composite Bouchet / Praclaux record is used here (Bouchet D: 0–110 kyr BP; Bouchet H: 110–287 kyr BP; Praclaux: 287–430 kyr BP). (from Tzedakis, et al. 1997, Earth and Planetary Science Letters 150, 171–176).]
and marine records, it also draws attention to some of the differences between them. One apparent divergence is in the relative amplitude of variation in the indicators used, with Arboreal Pollen (AP) frequencies showing in some cases higher amplitude variations relative to the δ¹³C record. This, to a certain extent, may be an artefact arising from the limitations of the AP percentage signal alone, which provides information on the changes in vegetation structure, but does not reflect compositional changes within and between the periods it defines. More in-depth comparisons may thus require a different measure (such as the paleoecological operator [11]) which can incorporate the additional information. Despite such shortcomings, however, comparison with long and detailed marine records such as ODP 980 [12] suggests that over higher frequencies of variability the AP curves show a closer correspondence to the planktic rather than the benthic isotope records. This suggests the occurrence of rapid climate changes which have had an influence on sea surface temperatures and downstream effects on terrestrial ecosystems, but a moderate impact on global ice volumes. What emerges is that long pollen sequences can be used to add detail to our understanding of the extent and nature of climate variability over orbital as well as sub-orbital frequencies.

P.C. Tzedakis
Department of Geography, University of Cambridge, Cambridge, UK

V. Andreieu, J.-L. de Beaulieu, M. Reille
Laboratoire de Botanique historique et Palynologie, URA CNRS, Marseille, France

S. Crowhurst, N.J. Shackleton
Department of Earth Sciences, University of Cambridge, Cambridge, UK

M. Folliere, D. Magri
Dipartimento di Biologia Vegetale, Università di Roma "La Sapienza", Roma, Italy

H. Hooghiemstra, T.A. Wijmstra
Department of Palynology and Paleo/Actuo-Ecology, University of Amsterdam, Amsterdam, The Netherlands

REFERENCES


Full references for this article can be found at www.pages.unibe.ch/publications/newsletters/ref993.html

WORKSHOP REPORTS

DFG Program

BONN, GERMANY, 1–2 JULY, 1999

A meeting of the participants in the Deutsche Forschungsgemeinschaft (DFG) priority program ‘Changes in the Geosphere-Biosphere during the last 15,000 years’ (see PAGES News Vol 6. No. 1) was held on July 1 and 2 in Bonn, Germany. Over 40 presentations were made summarizing the progress made in each of the projects funded through the program. These focus on continental and near-shore, marine archives of every kind within and around Germany. The outcomes of the program will be of great interest to PAGES through contributions to PEP III, to Focus 3 themes dealing with human impact on environmental systems, and to the improvement of chronological control for key periods of environmental change. The program will conclude with a major colloquium in November 2000 presenting the results through a series of oral reviews and project-specific posters. This meeting will be co-sponsored by PAGES and the joint intention will be to use the occasion to link the research accomplishments of the program more closely to the international scientific community.

Frank Oldfield
PAGES IPO, Bern Switzerland
oldfield@pages.unibe.ch

WORKSHOP REPORTS

4th Conference on Asian Marine Geology

QINGDAO, CHINA, 14–17 OCTOBER, 1999

More than 100 participants, from 18 nations, presented a range of research based primarily on marine sediment records in the Asia-Pacific region. Much of the research presented fell within the PAGES remit, including regional sea surface temperature and salinity reconstructions (Min-Pen Chen – Taiwan marginal seas, Tadami Oba – Japanese coastal waters, Yali Sun et al. – Sr measurements in corals). Other topics which received considerable attention included the reconstruction of changes in the Kuroshio boundary current (Pinxian Wang, Hiroshi Uijie) and sea level changes during the Holocene (Yong Ahn Kang, B. Krishna Rao, Fernando Sirignan). The Yellow River delivers an enormous sediment load to coastal waters, some 90% of which is derived from the Chinese Loess Plateau (Yosuke Saito). It was suggested that high resolution sediment records should be targeted by constraining periods of high sedimentation with accurate dating (Serge Bernier).

The Asian Marine Geology community has grown rapidly since the first meeting in Shanghai in 1988, and is increasingly addressing questions of high resolution, quantitative environmental change of relevance to the PAGES project. The Fifth International Conference on Asian Marine Geology is scheduled to be held in Thailand in 2003.

Keith Alverson
PAGES International Project Office, Bern, Switzerland
alverson@pages.unibe.ch