The PAGES webpages have been updated. For information about PAGES, where to find PAGES publications online, and links to PAGES Scientists, Activities and Tasks point your browser to http://www.pages.unibe.ch/. Comments, or reports of Piltdown Men [missing links], should be sent to alverson@pages.unibe.ch.

Z. L. Ding, J.Z. Ren, J.M. Sun and T.S. Liu
Institute of Geology, Chinese Academy of Sciences, Beijing 100029, China

Jason M. Stine
State Key Laboratory of Loess and Quaternary Geology, Academia Sinica, P.O. Box 17, Xian 710054 China

Stephen C. Porter
Quaternary Research Center, University of Washington, Seattle, Washington 98195, USA

Millennial-Scale Climatic Oscillations during the Last Interglaciation in Central China

Repeated southward excursions of North Atlantic polar water during the last interglacial (δ18O stage 5, 130-74 ka) are recorded by planktonic foraminifera and ice-rafted detritus (IRD) in North Atlantic sediment cores, and Greenland ice-sheet cores display quasi-synchronous fluctuations. Comparable high-frequency variations in the East Asian winter monsoon climate are discernible in three loess-paleosol profiles in central China that span the last interglacial (Fig. 5). Peak values of the >40 µm quartz fraction and bulk sediment samples from the S1 (last-interglacial) accretionary paleosol complex reflect major dust-flux events when winter monsoon winds strengthened. Frequent oscillations of the dust flux and nine significant dust events are recorded. Six events, falling between ca. 110 and 70 ka, are correlated with cold peaks (C19-24) identified in North Atlantic cores. Two comparable dust peaks occur within paleosol S1SS3 (= substage 5e); the older of these, dating to ca. 121 ka, may correlate with a brief cold event recently recognized in high-resolution marine and terrestrial climate-proxy records.

Zhi Sheng An
State Key Laboratory of Loess and Quaternary Geology, Academia Sinica, P.O. Box 17, Xian 710054 China

Seasonal Climatic Variation recorded by Phytolith Assemblages from the Baoji Loess Sequence in Central China over the last 150 ka

153 samples from modern surface soils in China were collected and analyzed quantitatively alongside related meteorological data. 25 types of opal phytoliths, with significant climatic linkages, were selected to establish climatic transfer functions. The modern climatic parameters used in this study are based on data for annual mean temperature and annual mean precipitation over the past 40 years from the Chinese National Meteorological Bureau (1995). Fig. 6 is a percentage diagram of 13 major phytolith types from the Baoji loess sequence in the south of the Loess