LOESS

The PAGES webpages have been updated. For information about PAGES, where to find PAGES publications online, and links to PAGES Scientists, Activities and Tasks point your browser to http://www.pages.unibe.ch/.

Comments, or reports of Piltdown Men [missing links], should be sent to alverson@pages.unibe.ch.

Seasonal Climatic Variation recorded by Phytolith Assemblages from the Baoji Loess Sequence in Central China over the last 150 ka

153 samples from modern surface soils in China were collected and analyzed quantitatively alongside related meteorological data. 25 types of opal phytoliths, with significant climatic linkages, were selected to establish climatic transfer functions. The modern climatic parameters used in this study are based on data for annual mean temperature and annual mean precipitation over the past 40 years from the Chinese National Meteorological Bureau (1995). Fig. 6 is a percentage diagram of 13 major phytolith types from the Baoji loess sequence in the south of the Loess
Comparison of East Asian Monsoon Proxies from the Central China Loess Plateau and Lake Biwa

The pattern of climate in eastern Asia is dominated by the summer and winter monsoons (Gao, 1962). The loess-paleosol sequence on the Loess Plateau of central China constitutes an excellent proxy record of variations in East Asian monsoon climate over the past 2.5 Ma (An et al., 1990; 1991; Ding et al., 1995). Magnetic susceptibility (MS) of the loess and paleosols has been used as a proxy indicator for the summer monsoon intensity; i.e., high magnetic susceptibility values reflect increased summer monsoon intensity (An et al., 1991); while the median diameter of quartz (QMD) isolated from the loess and paleosols can be regarded as a proxy index of the strength of winter monsoon winds, i.e., the greater the quartz median diameter, the stronger the winter monsoon winds (Xiao et al., 1995). Studies on grain-size distribution, oxygen isotope composition and micromorphological features of monomineralic quartz isolated from sediments of Lake Biwa, central Japan suggested that quartz particles finer than 10 μm were derived, through the transport of the winter monsoon, from arid/semiarid regions of the Asian continent, and thereby can be regarded as eolian quartz (Xiao et al., 1997a). By contrast, quartz grains coarser than 20 μm in the Lake Biwa sediments were considered to be derived, through soil erosion, from the surrounding terrain of the lake (Xiao et al., 1997b). Eolian quartz flux (EQF) to Lake Biwa provides direct information on variations in the East Asian winter monsoon strength, i.e., the higher the eolian quartz flux, the stronger the winter monsoon winds (Xiao et al., 1997a); whereas the fluvial quartz flux (FQF) reflects significant changes in paleoprecipitation over the lake area, and thus can be associated with the intensity of the summer monsoon, i.e., high fluvial quartz flux values imply increases in summer monsoon intensity (Xiao et al., 1997b).

As shown in figure 8, the EQF and FQF records of Lake Biwa sediments can be well compared with the QMD and MS records of the Chinese loess and paleosols. The intervals of high EQF values correspond to the periods of great QMD values, whereas the intervals of high FQF values correlate to the periods of high MS values. The EQF and the QMD as winter monsoon proxies indicate that the winter monsoon strengthened during periods marked by high EQF and QMD values, and it was relatively weaker when EQF and QMD values were lower. As as summer monsoon proxies, the FQF and the MS reveal significant variations in the intensity of the summer monsoon, i.e., the higher the FQF and MS values, the stronger the summer monsoon circulation. Variations in winter monsoon strength indicated by the EQF and QMD proxies bear a general inverse relation to those in summer monsoon intensity inferred from the FQF and MS proxies.

These four proxy records of East Asian paleomonsoon climate can be correlated with the SPECMAP marine δ18O stages 1 through 6 (Martinson et al., 1987) (Fig. 8). The main intervals of low EQF and QMD values and high FQF and MS values apparently coincide with SPECMAP δ18O substages 5e, 5c, and 5a, stage 3, and the early part of stage 1, while the main intervals of great EQF and QMD values and low FQF and MS values occurred during δ18O stages 4 and 2.

J.L. Xiao
Institute of Geology, Chinese Academy of Sciences,
P.O. Box 9825, Beijing 100029, China
jlxiao@public3.bta.net.cn

Fig. 7: Estimated temperature and precipitation variations in Baoji during the last 150 ka based on phytolith-climate transfer functions. Thick lines represent estimated regression values, fine lines are 95% confidence intervals.

Fig. 8: Time series of the last ca. 130,000 years comparing the quartz median diameter (QMD) and magnetic susceptibility (MS) of the loess-paleosol sequence at Luochuan in the central part of the Loess Plateau and the eolian quartz flux (EQF) and fluvial quartz flux (FQF) of Lake Biwa sediments the SPECMAP δ18O record (from Quaternary Science Reviews, in press).